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Abstract In this article, I review various methods for evaluating earthquake 
predictions and earthquake forecasts.  In many situations, you can use one or more 
of these methods to obtain quantitative answers to the questions: “Is this set of 
earthquake predictions particularly good, or could the same success be obtained by 
chance?”; “Is the observed record of earthquakes consistent with this earthquake 
forecast?”; and “Which of these two forecasts is better?”  I note the primary 
advantages and disadvantages of each evaluation metric and describe them in 
general terms and with specific examples or constraints (e.g., Poisson space-rate-
magnitude forecasts).  Accompanying this article are source code, compiled code, 
and data examples, which you can use to understand the mechanics of each metric.  
You can modify the source code to include additional tests or to introduce other 
functionality.  I also provide references to further reading. 

1 Motivation 

One of the cornerstones of science is the ability to accurately and reliably forecast 
natural phenomena.  Unfortunately, earthquake prediction research has been 
plagued by controversy, and it remains an outstanding problem; for a review of 
some of the historical challenges, see the article by Wyss and Michael (in 
preparation) or the book by Hough (2009).  The motivation for the work that I 
describe in this article is fairly self-evident: we want to know if an earthquake 
forecast or a set of earthquake predictions is particularly “good.”  Therefore, our 
fundamental objectives are to define and to quantify “good.” 
 
In this article, I emphasize the analysis of statements regarding future earthquake 
occurrence (i.e., characteristics such as origin time, epicenter, and magnitude) but 
many of the concepts discussed are applicable to other earthquake studies (i.e., 
probabilistic loss estimates, earthquake early warning, etc.).  A broader motivation 
of this article is to encourage you to exercise rigorous hypothesis testing methods 
whenever the research problem allows. 

2 Starting Point 

You should have a basic understanding of probability distributions, particularly 
how to sample a distribution using a random number generator; see articles in 
Theme III of the Community Online Resource for Statistical Seismicity Analysis 
(CORSSA) for details.  You should also have a basic understanding of seismicity 
catalogs.  See the article by Woessner et al. (in preparation) for details.   
 
What is an earthquake prediction?  For the purposes of this article, a well-defined 
earthquake prediction is a specification of a latitude-longitude-time-magnitude 
range, including the magnitude scale (i.e., local magnitude, moment magnitude, 
etc.) and the number of earthquakes expected in this range (i.e., zero, one, at least 
one, etc.).  Because magnitude estimates may vary from catalog to catalog, the 
appropriate catalog for evaluating the prediction should also be specified.  An 
earthquake prediction may optionally include probability of success, depth range, 

http://www.corssa.org/glossary/index#Poisson_distribution
http://www.corssa.org/glossary/index#magnitude
http://www.corssa.org/glossary/index#origin_time
http://www.corssa.org/glossary/index#epicenter
http://www.corssa.org/glossary/index#random
http://www.corssa.org/tutorials/themeiii/
http://www.corssa.org/glossary/index#local_magnitude
http://www.corssa.org/glossary/index#moment_magnitude
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focal mechanism, or some other measurable characteristic.  What is essential is 
that, after the end time of the prediction, one must be able to determine objectively 
whether or not the prediction was successful.  Making this determination should 
not require any interpretation.  To state the preceding in more general terms, the 
prediction statement must be unambiguously falsifiable.   
 
An example of a well-defined earthquake prediction is: I expect at least one 
earthquake between 1 March 2011 and 11 March 2011 with epicenter(s) in the 
latitude-longitude range 30N to 34N, 118W to 114W; qualifying earthquakes will 
have moment magnitude between 5.5 and 6.2 as reported in the Advanced National 
Seismic System earthquake catalog.  Because a prediction may be correct or 
incorrect by “luck,” we learn very little by evaluating a single prediction.  
Therefore, we are most interested in evaluating sets of several predictions. 
 
I note that this working definition of an earthquake prediction differs from some 
preceding definitions that required that a confidence level (or probability) be 
assigned to each prediction (e.g., Allen et al. 1976).  It also differs from that of 
Jackson (1996), who suggested that predictions are a special form of forecasts for 
which the probability of earthquake occurrence is “temporally higher than normal.”  
In this article, these distinctions are not terribly important, and I discuss 
evaluation methods that are applicable to binary earthquake predictions, 
probabilistic earthquake predictions, and a variety of earthquake forecasts. 
 
What is an earthquake forecast?  For the purposes of this article, I emphasize 
discrete forecast experiments in which the geographical region of interest is 
subdivided into non-overlapping cells defined by a range of latitude and longitude 
(and, optionally, depth).  For example, you might consider the state of California 
and subdivide the state into rectangular cells of 0.01 square degrees.  The 
magnitude range of interest and/or the time period of interest may likewise be 
subdivided.  In other words, the experiment space is gridded into non-overlapping 
“bins.”  In this context, the most general type of earthquake forecast is a ranking of 
the bins according to their expected probability to host one or more earthquakes.  
This ranking can be explicit—e.g., the forecaster might assign a rank to each bin 
and designate this ranking as the forecast.  The ranking can also be implicit—e.g., 
the forecast might specify the expected number of earthquakes in each bin (along 
with an estimate of forecast uncertainty). In the latter case, you’d derive the 
ranking by sorting the bins according to the expected number of earthquakes. 
 

3 Ending Point 

The techniques described in this article will allow you to quantify the predictive 
skill of an earthquake forecast or of a set of earthquake predictions.  You will be 
able to check if an observed set of earthquakes is consistent with a forecast, and 
you will have some tools to compare two forecasts.  Using the accompanying code 
and example data, you can execute each of the test methods described in this 
article (see section 6). 
 

http://www.corssa.org/glossary/index#focal_mechanism
http://www.corssa.org/glossary/index#earthquake_catalog
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It is important to note that you will not be able to “validate” or “invalidate” an 
earthquake forecast model or prediction algorithm.  A set of earthquake 
predictability experiments may lend support to a particular hypothesis, or they 
may suggest evidence contrary to the hypothesis.  Strictly speaking, the outcome of 
a particular experiment only tells us something about that particular experiment; it 
does not necessarily tell us how well a forecast may fare somewhere else in space, 
time, or magnitude.  For example, a forecast may be deemed consistent with the 
observations of one experiment and then, owing to variation in seismicity or 
random systematic effects, it may be shown to be inconsistent with observations in 
another experiment.  I include this disclaimer to remind you to be careful in 
reporting the outcome of a prediction experiment. 

4 Theory 

In this section, I briefly and abstractly review some specific concepts that are used 
in explaining the methods in the next section. 

4.1 Normalization 

To normalize a set, sum its elements and divide each element by this sum.  For 
example, if the set is composed of elements 61, 37, and 102, the elements of the 
resulting normalized set are 0.305, 0.185, and 0.51. 

4.2 Poisson distribution 

The Poisson distribution is a discrete probability distribution that describes a 
Poisson process, in which the probability of an event occurring is independent of 
the time since the previous event, and events occur at an average rate λ.  The 
probability that ω events will occur in a given time period is 

( ) ( λ
ω
λλω

ω

−= exp
!

|Pr ) , (1) 

which in this article is called the Poisson likelihood of ω given λ.  The Poisson 

likelihood is only defined for non-negative integers ω, while λ can be any non-
negative number.  For the Poisson process with average rate λ = 11.1, you can 

check that the likelihood of ω = 4 is less than 1%.  The Poisson cumulative 
distribution function gives the probability that at least ω events will occur and is 
defined: 
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For λ = 11.1, ω = 4, F(ω|λ) = 1.4%.  The Poisson inverse cumulative distribution 

 gives the smallest value of ω such that the Poisson cumulative 
distribution function with parameter value λ evaluated at ω equals or exceeds p, 

( λ|1 pF − )

http://www.corssa.org/glossary/index#earthquake_predictability
http://www.corssa.org/glossary/index#earthquake_predictability
http://www.corssa.org/glossary/index#mean_(average)
http://www.corssa.org/glossary/index#maximum_likelihood
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the probability of interest.  (This is implemented as the poissinv function in 
MATLAB®, and a simple implementation is given in the accompanying code as 
org.scec.predictionTesting.MathUtil.inverseCumulativePoisson.)  
For λ = 11.1, p = 5%, you can verify that F-1(ω|λ) = 6. 

4.3 Poisson joint likelihood 

If we consider n independent Poisson processes characterized by their respective 
average rates Λ = {λ1, λ2,…, λn}, the probability that Ω = {ω 1, ω 2,…, ωn} events, 
respectively, will occur is 
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which in this article is called the Poisson joint likelihood of Ω given Λ.  For 
example, if Λ = {1.2, 6.4, 3.7}, the likelihood of Ω = {1, 6, 3} is (36% x 16% x 21%) 
= 1.2%. 

4.3 Alarm function 

A binned earthquake rate forecast is one that specifies the expected number of 
earthquakes in each forecast bin.  These numeric forecasts can be converted to 
simple Yes/No predictions by selecting a threshold: an earthquake is expected in 
any bin with a rate above the threshold and earthquakes are not expected in bins 
with rates lower than the threshold.  The resulting construct is an alarm set, and 
many such alarm sets can be produced by varying the threshold value.  Therefore, I 
say that the rate forecast provides an alarm function.  More generally, an alarm 
function is any forecast construct that provides a ranking from which alarm sets 
can be so derived.  A conceptual example is shown in Fig. 1.   
 
If the ranking is given in terms of probability—e.g., 10% of target earthquakes will 
fall in bin A, 70% will occur in bin B, and 20% will fall in bin C—I call this a 
probabilistic alarm function. 
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Fig. 1 Example alarm function in a) is a gridded ranking of bins in California from the USGS 2002 
National Seismic Hazard Map rate model, where “warm” colors have a higher ranking than “cool” colors.  
When a high threshold value is chosen, the resulting alarm set is depicted in b), where red bins indicate a 
“Yes” prediction and all others are “No.”  As the threshold value is decreased, the region of “Yes” 
predictions continues to grow, as shown in c) and d), where medium and low thresholds, respectively, were 
chosen.  (Modified from Zechar and Jordan 2008) 

4.4 Simulating an observation consistent with a forecast 

Many of the methods described in section 5.2 require simulated observations that 
are “consistent with a forecast.”  Consider a probabilistic alarm function with four 
bins in which 1.2, 3.7, 0.1, and 5 earthquakes are expected.  Upon normalization, 
this can be interpreted as a forecast statement that the bins will host 12%, 37%, 
1%, and 50% of the earthquakes, respectively.  (The percentage for each bin is the 
number of earthquakes expected in the bin divided by the number of earthquakes 
expected in all bins.)  The goal is to simulate observations where each simulated 
earthquake has a 12% chance of occurring in the first bin, a 37% of occurring in the 
second bin, a 1% chance of occurring in the third bin, and a 50% chance of 
occurring in the fourth bin.   
 
To do this, you can construct another discrete distribution that maps random 
numbers to bins.  The mapping distribution has the same number of bins as the 
forecast and is constructed by normalizing and summing the rates in each forecast 
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bin; the bins in the mapping distribution are assigned the cumulative normalized 
sums.  For example, the mapping bin values for the example being considered are 
0.12, 0.49, 0.5, and 1.  Then, simulate an earthquake by sampling the uniform 
distribution between 0 and 1; the simulated earthquake is placed in the bin that 
corresponds to the first bin in the mapping distribution which exceeds the random 
sample value.  If the sample is 0.37, the simulated earthquake belongs to the second 
bin.  If the sample is 0.69, it belongs to the fourth bin. 
 
For this simulation algorithm, it is not a requirement that the forecast be a rate 
forecast (like I used in this example); any forecast with a probabilistic alarm 
function will suffice.  Note that this algorithm does not necessarily produce catalogs 
that are physically realistic; for example, it operates under the assumption that the 
forecast in each bin is independent of the forecast in every other bin.  Rather, this 
algorithm gives an idea of what seismicity would look like if a particular forecast 
was the correct model of seismicity. 

4.5 Notation 

Table 1 summarizes some of the notation used in the following sections. 
Notation Meaning Example

( )!! knkk −
=⎟⎟

⎠
⎜⎜
⎝

!nn⎞⎛
 

the number of subsets with k 
elements that can be formed 
from a set with n elements ( ) 10

2!3!22
===⎟⎟

⎠
⎜⎜
⎝

45!55 ⋅⎞⎛
 

{ }A  the number of elements in 
set A 

If A = {a1,a2,…,an}, |{A}|=n. 

{ }Aabaa ∈< ,| iii  
the subset of elements in set 
A that are smaller than b 

If A = {3,7,8,4,12}, b=8, the resulting subset is 
{3,7,4 }.

{ }Aabaa iii ∈< ,|  the number of elements in 
set A that are smaller than b 

If A = {3,7,8,4,12}, b=8, the result is 3. 

[ ]ba,  
the range between a and b, 
inclusive 

Considering the integers, [4,7]= {4, 5, 6, 7} 

 

5 Available Methods 

5.1 Given a set of earthquake predictions 

In the simplest case, you will have a set of “Yes” or “No” earthquake predictions and 
a corresponding set of observations.  To begin, note which predictions were 
successful and which were not.  Call each earthquake that occurred within a “Yes” 
prediction a hit, and each earthquake that occurred within a “No” prediction a 
miss.  Each “Yes” prediction in which no corresponding earthquake occurred is a 
false alarm, and each “No” prediction in which no earthquake occurred is a correct 
negative.  You can construct a table with the number of each of these 
contingencies (e.g., Table 2).  There are several metrics that depend on the number 
of hits and/or misses and/or false alarms and/or correct negatives; such metrics are 
typically said to be based on the contingency table.  For example, you can compute 
the miss rate—the fraction of target earthquakes that were misses—or the false 
alarm rate—the fraction of “Yes” predictions that were false alarms.  The trouble 
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with using any of these measures in isolation is that they can be optimized using a 
simple strategy: to obtain a zero miss rate, one can specify a prediction that covers 
the entire experiment space-time.  To address this deficiency, these metrics are 
often used in pairs.   
 

 Prediction 
Yes No

Occurrence 
Yes Hit Miss
No False alarm Correct Negative

Table 2 Example binary prediction/binary outcome contingency table that denotes how the four 
contingencies are tabulated. 

5.1.1 Receiver Operating Characteristic 

For evaluating earthquake predictions, one popular pair of contingency table 
metrics is the false alarm rate, F, and the hit rate, H (which is 1 – miss rate); when 
these values are plotted together on the square [0,1] x [0,1], the resulting metric is 
called the Receiver Operating Characteristic (ROC) (Mason 2003, and references 
therein).  Each set of “Yes” or “No” predictions corresponds to a single point on the 
ROC.  To say if this set of predictions is skillful, you can compare its ROC point 
with the diagonal line connecting the (H, F) points (0, 0) and (1, 1)—this diagonal 
represents the long-term behavior of random guessing.   
 
There are a number of metrics to establish the significance of the distance from the 
diagonal, but I won’t mention them here because the ROC suffers from a serious 
problem when applied to earthquake predictions: it does not account for the fact 
that earthquakes are clustered in space.  In particular, the implicit reference model 
used in ROC, what I called “random guessing,” assumes that earthquakes are 
equally likely to occur anywhere in space, which you know from first-order 
observations is unrealistic.  This makes the ROC a very weak tool for evaluating 
earthquake predictions, and it should be avoided when considering earthquake 
predictions with a spatial component.  Indeed, many of the metrics based on the 
contingency table suffer the same disadvantage. 
 
Pros: simple to compute, simple to interpret 
Cons: unrealistic reference model, easy to achieve statistically significant results 
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Fig. 2 Example ROC diagram indicating performance of two imaginary sets of predictions.  Because the 
point for Alarm Set A is above the diagonal, it is suggested that the predictions are better than random 
guessing.  Point B indicates a set of predictions that are much worse than random guessing. 

5.1.2 The Molchan diagram 

Closely related to the ROC is the Molchan diagram, which is a plot of the miss 
rate, υ, and the fraction of experiment space-time volume, τ, occupied by “alarms,” 
or Yes predictions (Molchan 1991, Molchan and Kagan 1992).  This second metric 
is what distinguishes the Molchan diagram from the ROC, and it corrects for the 
reference model problem mentioned above.  Indeed, the Molchan diagram allows for 
any reference model to define the fraction of “space” occupied by alarms.  Typically, 
“space” in this context is not geographical space (i.e., square kilometers or square 
degrees), but rather the reference model’s probability estimate (i.e., what is the 
probability that an earthquake will occur in this particular space?). For most 
space-time predictions, the appropriate reference model is based on previous 
seismicity, representing the parsimonious hypothesis that future earthquakes are 
most likely to occur where they occurred in the past (where our knowledge of the 
past is typically limited by the availability of reliable data).  For details on this 
hypothesis, see the section on smoothed seismicity in the CORSSA article by 
Werner et al. (in preparation). 
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Fig. 3 Molchan diagram confidence bounds computed by solving eq. 4 for all values of h, with N = 15 

imaginary target earthquakes.  The curves are contours for α = {1, 5, 25, 50}%. Here, point A represents 
an imaginary alarm set that has obtained 8 hits; this point indicates that the alarm set is skillful with 
more than 99% confidence.  The point B (11 hits from another imaginary alarm set) supports a statement 
of significant skill at just above 75% confidence. (Modified from Zechar and Jordan 2008) 

In practice, a smoothed seismicity reference forecast is analogous to the real estate 
market, where popular locations have a higher value.  A smoothed seismicity 
reference emphasizes regions that historically have high seismicity rates; if you 
make a positive prediction in a place where the seismicity rate has been high, this 
costs more than declaring an alarm in a region with low seismic activity.  If, for 
example, a binary alarm set has elements 0, 1, 1, 0 and the normalized reference 
forecast is 0.12, 0.37, 0.01, and 0.50, τ = 0(0.12) + 1(0.37) + 1(0.01) + 0(0.50) = 
0.38.  As with the ROC, a single alarm set corresponds to a single point on the 
Molchan diagram.  Ideal predictions obtain points near the origin, which 
corresponds to maximum success (υ  0) at minimum cost (τ  0).   
 
For a given value of υ, you can determine the statistical distribution of τ, and 
therefore the statistical significance of a given point on the Molchan diagram.  In 
particular, the probability of obtaining h or more hits by chance, given that there 
have been N observed target earthquakes, is described by the binomial distribution 
(see Fig. 3): 
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http://www.corssa.org/glossary/index#seismicity_rate
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Therefore, a very small α value suggests that the alarm set has high skill.  Molchan 
and Romashkova (in review) have also suggested using the metric (1 – τ – υ) to 
characterize the skill of an alarm set.  In the situation where you have access only 
to a set of predictions, this is a reasonable way of evaluating their skill, particularly 
if you can form a reasonable corresponding reference model.  However, in the 
situation where you have an alarm function and many derived alarm sets, you 
might obtain contradictory results: you may find that some points indicate high 
significance while others do not.  This creates a difficulty in saying something 
useful regarding the predictive skill of the alarm function (as opposed to the skill of 
a particular alarm set). 
 
Pros: simple to compute, allows you to specify reference model 
Cons: measure of “space” is not unique and may be confusing, can yield ambiguous 
results for an alarm function 

5.1.3 The area skill score 

The area skill score directly addresses the issue of ambiguous Molchan diagram 
results.  Such ambiguity may arise when deriving every possible alarm set from a 
given alarm function.  By lowering the threshold value from the maximum forecast 
value to the minimum, you trace out a Molchan trajectory, which characterizes the 
skill of the entire alarm function.  The area skill score is defined as the normalized 
area above the Molchan trajectory—the score varies between zero and one, and 
higher values are preferable.  For the simplest cases, the distribution of the area 
skill score has relatively straightforward analytical solutions (see Zechar and 
Jordan 2010).  For any reference model and/or clustered observations (i.e., more 
than one target earthquake in a given bin), you can estimate the distribution of the 
area skill score by simulating many random forecasts.  The accompanying code 
contains one such implementation.  To determine the significance of a given area 
skill score, you should compare that score with the distribution of scores under the 
reference model. 
 
Pros: removes ambiguity of multiple Molchan trajectory points, allows 
straightforward hypothesis test 
Cons: may result in loss of information (because vector-valued Molchan trajectory 
is reduced to a scalar value) 
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Fig. 4 Molchan diagram with hypothetical Molchan trajectory (blue line) and dashed lines showing how to 

compute the area skill score: sum the columns, which grow in height by 1/N as you move from τ = 0 to τ 
= 1. (After Zechar and Jordan 2010) 

5.1.4 The gambling score 

The previous two metrics, while correcting the spatially uniform reference model 
flaw of the ROC, depend on the ability to define misses.  There is at least one 
situation in which this is not feasible: when an individual or algorithm produces 
only “Yes” predictions and covers the rest of the experiment space with statements 
of “No comment.”  In this situation, there are no “No” prediction statements and 
therefore the Molchan diagram, the area skill score, and many other contingency 
table measures are not informative.  Zhuang (2010) introduced a generalized score 
that is analogous to gambling and which is applicable to “Yes”-only alarm sets.  
Moreover, it is also applicable to both fully binary and probabilistic predictions.   
 
To understand the gambling score, imagine each prediction as a forecaster betting 
one credit of reputation.  For the ith bet, if the forecaster bets “Yes,” denote this by 
xi = 1; otherwise xi = 0.  If an earthquake happened inside the specified prediction, 
denote this by yi = 1; otherwise yi = 0.  To compute the gambling score, one must 
specify a reference probability for each prediction; denote the reference probability 
for the ith forecast by .  For such a set of binary forecasts X, binary outcomes Y, 
and reference probabilities P0, the net reputation gain is 

0
ip
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Here, the sum is performed over all predictions.  The four summands in eq. 5 
correspond to the reputation gain from hits, misses, false alarms, and correct 
negatives, respectively.  If the forecasts are probabilistic, you can think of the ith  
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forecast as a bet of pi on “Yes” and a bet of (1 – pi) on “No.”  In this situation, the 
net reputation gain for the set of probabilistic predictions P is   
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In both cases, if the net reputation gain is positive, this indicates that the 
predictions were superior to the reference model.  Zechar and Zhuang (2010, 
section 5) described a simulation method to establish the statistical significance of 
an observed gambling score.  In the accompanying code, you can execute these 
simulations using a spatially inhomogeneous Poisson process as the reference model. 
 
Pros: widely applicable 
Cons: may be time-consuming to construct appropriate reference model 

5.2 Given one or more rate forecasts 

Another common format for earthquake forecasts is a gridded rate forecast, a 
forecast in which the geographical region of interest is divided into sections and the 
forecast specifies the expected number of earthquakes in each section.  This is the 
format that is widely used in the Collaboratory for the Study of Earthquake 
Predictability (CSEP) testing centers (Jordan 2006, Zechar et al. 2010b).  In 
particular, I consider binned space-rate-magnitude forecasts.  For this class of 
experiments, the testing region set, R, is the Cartesian product of the binned 
magnitude range of interest, set M, and the binned spatial domain of interest, set 
S: 

SMR ×=  (7) 

For example, in the Regional Earthquake Likelihood Models (RELM) experiment 
(Schorlemmer and Gerstenberger 2007, Schorlemmer et al. 2007), the magnitude 
range of interest is 4.95 and greater, and the bin size is 0.1 units, with the 
exception of the final, open-ended bin: 

]} [8.95, , 8.95) [8.85, ,… 5.15), [5.05, 5.05), {[4.95, = ∞M           (8)   

The RELM spatial domain of interest is a polygon enclosing California (polygon 
coordinates can be found in Table 2 of Schorlemmer and Gerstenberger 2007); this 
area is represented as a set of latitude/longitude rectangles of 0.1° x 0.1°. 
Almost all current experiments in CSEP testing centers consider binned earthquake 
forecasts that incorporate the assumption that the number of earthquakes in each 
forecast bin is Poisson-distributed and independent of those in other bins.  In this 
case, an earthquake forecast, Λ, on R is fully specified by the expected number of 
events in each magnitude-space bin.  If you consider the magnitude-space bin 
indexed by ordered pair (i, j), you can denote the number of earthquakes forecast 
in this bin as λ(i, j).  Using this notation, the earthquake forecast can be written as 
the set of each bin’s forecast: 

( ){ }SM ∈∈= ,jiji |,λΛ . (9) 
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 (Note that to simplify the notation, I employ a single index to address two-
dimensional geographical space: the spatial bin i corresponds to a range of latitude 
and longitude.)   
 
In the description of the metrics below, the equations are also applicable to a 
forecast with arbitrary independent distributions in each bin (i.e., not only 
Poisson).  A forecast that specifies a probability distribution fij in each bin—that 
is, fij gives the probability of observing zero earthquakes, one earthquake, etc. in 
the magnitude-space bin indexed by (i, j)—can be denoted: 

{ }SM ∈∈= ,jifij |Λ . (10) 

The locations of the observed earthquakes—typically epicenters for regional 
experiments, but you may use hypocenters or centroid locations—are binned using 
the same discretization as R, and the observed catalog, Ω, is represented by the set 
of the number of observed earthquakes in each bin, denoted ω(i,j) for the 
magnitude-space bin indexed by (i, j): 

( ){ }SM ∈∈= ,jiji |,ωΩ . (11) 

 
All of the metrics in this section are based on the likelihood of observing the 
catalog given the forecast—in other words, the joint likelihood of each bin’s 
observation given each bin’s forecast.  In the general case, the joint likelihood is: 

( ) ( ) ( ) ( )( )
( )
∏

∈

=
Rji

ijnn jif
,

2211 ,|Pr...|Pr|Pr ωλωλωλω , (12) 

When the forecast is Poisson, the joint likelihood is given by eq. 3.  Often, it is 
convenient to work with the natural logarithm of these joint likelihoods—the joint 
log-likelihood, which is the sum of each bin’s log-likelihood.  For the general case, 
this is 

( ) ( )( )( )
( )
∑

∈

=
Rji

ij jifL
,

,log| ωΛΩ , (13) 

and for the Poisson case, this is 

( ) ( ) ( ) ( )( ) ( )( )( )
( )
∑

∈

−+−=
Rji

jijijijiL
,

!,log,log,,| ωλωλΛΩ , (14) 

The joint log-likelihood has a negative value, and values that are closer to zero 
indicate a more likely observation—in other words, such a value indicates that the 
forecast shows better agreement with the observation. 
 
To account for forecast uncertainty, you must usually simulate catalogs that are 
consistent with the forecast.  In section 4.2, I described the procedure for the 
situation in which the number of earthquakes to simulate is known.  In the general 
case of arbitrary independent forecast distributions, let Fij be the cumulative 
probability density in bin (i, j).  For each forecast bin, draw a random number z 
from the uniform distribution on (0,1].  The number of earthquakes to place in this 

http://www.corssa.org/glossary/index#centroid
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bin is given by the inverse cumulative distribution at this point, .  (In 

section 

( )zFij
1−

4.2, I described the Poisson inverse cumulative distribution, and, in general, 
any discrete inverse cumulative distribution can be solved directly by calculating 
the cumulative distribution function at each point and comparing with z, the 
probability of interest.)  By iterating over all forecast bins, you will have a 
simulated catalog consistent with the forecast. 

5.2.1 The Likelihood test (L-test) 

In the L-test, you compute the observed joint log-likelihood (given by eq. 13 or 14) 
without any knowledge of whether this is a good score.  Ask the question: if the 
forecast were “correct,” what scores might we expect?  In other words, is the 
observed catalog consistent with the forecast?  To answer this question, simulate 
many catalogs consistent with the forecast using the procedure described above.  In 
the situation where the forecast is Poisson, use the procedure described in section 
4.4; the number of earthquakes to simulate for each catalog is also a random 
Poisson variable with expectation equal to the sum of each bin’s expected rate.  
That is, the average rate parameter value is equal to the sum over all bins and you 
sample the Poisson distribution with this expectation to decide how many 
earthquakes to simulate.  Such a sampling of the Poisson distribution is 
implemented in MATLAB® as poissrnd.  Alternatively, you can draw a random 
number on [0,1] and execute 

org.scec.predictionTesting.MathUtil.inverseCumulativePoisson 

in the accompanying code. 
 

Now you have a set of simulated catalogs { }Ω̂ , where each catalog can be written  

( ) ( ){ R∈= jijixx ,|,ˆˆ ωΩ }

)
, (15) 

where ( jix ,ω̂  is the number of simulated earthquakes in bin (i, j).  Here and in 

the following sections, the hat is used to indicate a simulated value or a value 
based on a simulated set of data.  For each simulated catalog, compute the joint 

log-likelihood, forming the set { }L̂  with the xth member equal to the joint log-
likelihood of the xth simulated catalog: 

( )ΛΩ |ˆˆ
xx LL = , (16) 

where each member of the set is a simulated joint log-likelihood.  Then compare 
the observed joint log-likelihood with the distribution of the simulated joint log-
likelihoods.  Does the observed joint log-likelihood fall in the lower tail of the 

distribution of { }L̂ ?  If it does, this indicates that the observation is not consistent 

with the forecast—in other words, the forecast is not accurate.  The quantile score 
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γ is the fraction of simulated joint log-likelihoods less than or equal to the observed 
joint log-likelihood: 

{ }
{ }L

LLL xx

ˆ

ˆ|ˆ ≤
=γ , (17) 

where |{A}| denotes the number of elements in a set {A} (see also Table 1). A very 
small value of γ indicates that the observation is inconsistent with the forecast.  
Indeed, this is an estimate of the significance value: you can say with 100(1-γ)% 
confidence that the observation is inconsistent with the forecast. 
 

 
Fig. 5 Example L-test results for two different imaginary forecasts. See text for explanation.   

Fig. 5 is a graphical explanation of the L-test.  This figure demonstrates results for 
two imaginary forecasts (one in the top row and the other in the bottom row).  In 
5a and 5c, I show the observed joint log-likelihood (dashed black line) and a 
histogram of 1000 simulated joint log-likelihoods.  In b) and d), I show the 
corresponding empirical cumulative distribution functions (solid blue line) and its 
intersection with the observed joint log-likelihood (dashed black line); also shown is 
the α=2.5% critical region (shaded box).  The intersection of the black dashed line 
and the blue line indicates the L-test summary statistic γ.  In 5a, the observed joint 
log-likelihood does not fall in the lower tail of simulated joint log-likelihoods; the 
dashed black line in 5b is not inside the shaded box.  In 5c, the observed joint log-
likelihood does fall in the lower tail—the dashed black line in 5d is inside the 
shaded box—indicating that the observed joint log-likelihood is much smaller than 
would be expected if the forecast in the second row were the true model of 
seismicity. 
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The L-test considers the entire space-rate-magnitude forecast and thereby blends 
the three components.  In the following subsections, I describe three additional 
tests that isolate the skill of the rate forecast, magnitude forecast, and spatial 
forecast, respectively.  Each of these tests is similar to the L-test.  Heuristically, 
you can think of the L-test as comprising the N(umber)-test, which tests the rate 
forecast; the M(agnitude)-test, which tests the magnitude forecast; and the S(pace)-
test, which tests the spatial forecast. 
 
Pros: widely applicable, tests entire forecast 
Cons: blends effects of spatial forecast, rate forecast, magnitude forecast 

5.2.2 The Number test (N-test) 

The N-test is intended to measure how well the total number of forecast 
earthquakes (summed over space and magnitude) matches the number of events 
observed; in other words, it isolates the rate component of the forecast.  The 
question of interest, then, is as follows: is the number of observed target 
earthquakes consistent with the number of earthquakes forecast?  The observed 
number of earthquakes, Nobs, can be written 

( )
( )
∑

∈Rji
obs

,
= jiN ,ω

 

. (18) 

Does Nobs fall in one of the tails of the forecast rate distribution?  In general, you 
can estimate the forecast rate distribution by simulating many catalogs with the 
procedure described in section 5.2.  By doing this, you’ll generate a set of simulated 

rates, { }N̂ , which you can use to estimate the probability i) of observing at most 
Nobs earthquakes and ii) of observing more than Nobs earthquakes.  These 
probabilities are, respectively, 

{ }
{ }N̂1

NNN obsxx
ˆ|ˆ ≤

=δ  (19a) 

and 

{ }
{ }N

NNN obsxx

ˆ

ˆ|ˆ
2

>
=δ . (19b) 

For a Poisson forecast, the forecast rate distribution is Poisson with expectation, 
Nfore, given by the sum over all bins: 

( )
( )
∑

∈

=
Rji

fore jiN
,

,λ
. (20) 

Then the cumulative distribution of the forecast rate is simply the right-continuous 
Poisson cumulative distribution function, 
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( ) ( ) ( )
∑

=

−=
x

i

i
fore

forefore i
N

NNxF
0 !

exp| , (21) 

and this can be used in the place of simulations.  In the situation where the 
forecast is Poisson, the N-test metrics are: 

( )( )foreobs NNF |111 −−=δ  (22a) 

and 

( )foreobs2 NNF |=δ . (22b) 

 
To interpret the N-test results, you can use a one-sided test with an effective 

significance value, αeff, which is half of the intended significance value α; in other 

words, if you intend to maintain a Type I error rate of α = 5%, compare both δ1 

and δ2 with a critical value of αeff = 0.025.  If δ1 is less than αeff, the forecast rate 

is too low—an underprediction—and if δ2 less than αeff, the forecast rate is too 
high—an overprediction.  For example, if 12.22 earthquakes were forecast (with 

Poisson uncertainty) and 16 earthquakes were observed, δ1 = 17.2% and δ2 = 
88.6%, indicating that the observation is consistent with the forecast. 
 
Pros: isolates rate forecast, widely applicable 
Cons: ignores spatial component, ignores magnitude component 

5.2.3 The Magnitude test (M-test) 

The objective of the M-test is to consider only the magnitude distributions of the 
forecast and the observation.  To isolate these distributions, sum over the spatial 
bins and normalize the forecast so that its sum matches the observation: 

{ }( )
( ) ( )

( ){ }
( ) ( )∑

∈

=

∈=

Sjfore

obsm

mm

ji
N
Ni

ii

,

|

λλ

λ MΛ

∑
∈

=

∈=

Sj

m

mm

jii
ii

,
|

ωω

ω MΩ

. (23) 

Using these values, compute the observed joint log-likelihood just as in the L-test: 

( )mmLM ΛΩ |= . (24) 

Here, the functional form of L is given by eq. 13 or 14, depending on the forecast 
format.  How does the value from eq. 24 compare to the distribution of simulated 
joint log-likelihoods?  For the M- and S-tests (see next subsection), rather than 
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varying from simulation to simulation, the number of earthquakes to simulate, 
Nsim, is fixed at Nobs.  (This is done to remove any effect of variations in earthquake 
rate.)   

 
Fig. 6 Example magnitude probability distributions from RELM forecasts a) Helmstetter-Mainshock and 
b) Ward-Simulation. Distributions are discrete and were specified in 41 bins each having a width of 0.1 
magnitude units.  The white bars show the linear distribution (scale on left ordinate axis) and the black 
bars show the base-10 logarithm of the distribution (scale on right ordinate axis). (Modified from Zechar 
et al. 2010a) 

For each simulated catalog, the joint log-likelihood is computed, forming the set 

{ }M̂  with the xth member equal to the joint log-likelihood of the xth simulated 
catalog: 

( )mmLM ΛΩ |ˆˆ =x x . (25) 

Similar to the L-test, the M-test is summarized by a quantile score, κ, 

{ }
{ }M̂

MMM xx
ˆ|ˆ ≤

=κ . (26) 

If κ is less than the critical significance level α, this indicates that the observed 
magnitude distribution is inconsistent with the forecast. 
 
Pros: isolates magnitude forecast, widely applicable 
Cons: ignores spatial component, ignores rate component 
 

5.2.4 The Space test (S-test) 

The S-test is the spatial equivalent of the M-test, where only the spatial 
distributions of the forecast and the observation are considered.  Similar to the M-
test, isolate the spatial information by summing; in this case the sum is performed 
over magnitude bins, and the resulting forecast sum is normalized so that it 
matches the observation: 
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( ){ }

( ) ( )

( ){ }
( ) ( )∑

∑

∈

∈

=

∈=

=

∈=
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ss
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ji
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jij
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,

|

,
|

λλ

λ

ωω

ω

S

S

Λ

Ω

. (27) 

This summing and normalization procedure removes the effect of the rate and 
magnitude components of the original forecast.  Using these values, compute the 
observed joint log-likelihood just as in the L- and M-tests: 

( )ssLS ΛΩ |= . (28) 

Again, ask how this value compares to the distribution of simulated joint log-
likelihoods.  (The simulation procedure is the same as for the M-test.)  For each 

simulated catalog, compute the joint log-likelihood, forming the set { }Ŝ  with the 
xth member equal to the joint log-likelihood of the xth simulated catalog: 

( )ssLS ΛΩ |ˆˆ =x x . (29) 

The S-test is summarized by a quantile score ζ, 

{ }
{ }Ŝ

SSS xx
ˆ|ˆ ≤

=ζ . (30) 

If ζ is less than critical significance value α, this indicates that the observed spatial 
distribution is inconsistent with the forecast. 
 
Pros: isolates spatial forecast, widely applicable 
Cons: ignores magnitude component, ignores rate component 
 

5.2.5 The Likelihood Ratio test (R-test) 

All of the preceding subsections in this section have emphasized the evaluation of a 
single forecast.  The R-test is designed for pairwise comparisons of two forecasts, 
and it is based on the simple idea that a forecast with a higher joint log-likelihood 
is better.  The likelihood ratio for two forecasts ΛA and ΛB is the difference of the 
joint log-likelihoods: 

( ) ( )BAAB ||Ω Λ LLR Ω Λ= − . (31) 

As with the previous likelihood-based metrics, you will simulate catalogs to 
establish the significance of this value.  In this case, simulate catalogs consistent 
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with ΛA and construct a set of simulated likelihood ratios { }ABR̂ .  The 
corresponding metric is the quantile score 

{ }
{ }AB

ABABAB
AB ˆ

ˆ|ˆ

R

RRR ≤
=α . (32) 

If αAB is less than the critical significance level α, this indicates that the observed 

catalog is inconsistent with the forecast ΛA.  This procedure is symmetric: you can 

compute RBA, construct { }BAR̂ , and determine αBA.  Keep in mind that the 

likelihood ratio itself—that is, the R value based on eq. 31—indicates which 
forecast is better, but the R-test does not provide a way to test the significance of 
this ratio, i.e., to quantify how much better a forecast is. 
 
Pros: compares two forecasts while preserving the space-rate-magnitude structure 
Cons: does not quantify how much better one forecast is than another 

6 Illustrative Examples 

 
Fig. 7 Two example space-rate forecasts from the southwest Pacific CSEP testing region.  White squares 
indicate locations and magnitudes of observed target earthquakes.  These are the example forecasts in the 
accompanying data files (TripleS on the left, DBM on the right).  (Note that the accompanying example 
catalog is from an earlier time period, not the one shown here.) 

Along with this article, you should have downloaded a zipped file containing codes 
that implement the methods described in section 5 and some data files to 
accompany the examples.  If you did not already download this zipped file, get it 
from www.corssa.org.  These codes require the Java runtime engine, which you can 
download from www.java.com.  All instructions for executing the examples are 
included in the file readme.txt. 
 

http://www.corssa.org/
http://www.java.com/
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For each test except the M-test, I have provided the two forecasts that are shown 
in Fig. 6.  These are space-rate forecasts without magnitude discretization and are 
being analyzed in the US CSEP testing center.  For the M-test, I provided the 
Helmstetter-Mainshock and Ward-Simulation forecasts from the RELM experiment 
(the magnitude component of these forecasts are depicted in Fig. 6) (Helmstetter 
et al. 2007, Ward 2007). 

7 Further Reading 

Mason (2003) provides an extensive overview of binary forecasts, with an emphasis 
on contingency table measures and their applications to, for example, tornado 
forecasts. 
 
The articles of Molchan (1991) and Molchan and Kagan (1992) give the most 
complete treatment of the Molchan diagram (alternatively called the errors 
diagram).  Kossobokov (2004, Section 7) also discussed the Molchan diagram and 
an empirical approach for defining the measure of space.  The recent article by 
Molchan and Keilis-Borok (2008) and the article by Molchan (2010) consider the 
extension of the earthquake prediction problem to multidimensional spatial 
forecasts. 
 
One of the earliest applications of likelihood metrics to earthquake forecast testing 
was the evaluation by Kagan and Jackson (1995) of a forecast by Nishenko 
(1991).  The forecast method was applied to a set of spatial zones, and the 
probability of a target earthquake in each zone was given—in this case, the target 
earthquake was defined by a zone-varying minimum magnitude.   
 
In evaluating the VAN algorithm, Kagan (1996) applied a simple technique in 
which he simulated alarms after each strong earthquake; in doing so, he showed 
that he could easily match the performance of the VAN algorithm.  McGuire et al. 
(2005) and McGuire (2008) adopted a similar procedure to demonstrate the 
predictability of moderate earthquakes in the East Pacific Rise. 
 
Jackson (1996, p. 3773) described a simple method for simulating target 
earthquakes for a set of predictions for which success probabilities are estimated.   
 
In developing broad regional earthquake forecasts, Jackson and Kagan (1999) and 
Kagan and Jackson (2000) used an L-test for simulating target earthquakes for a 
set of predictions for which success probabilities are estimated; they fixed the 
number of earthquakes in the simulations, yielding a conditional L-test.  They also 
applied a likelihood ratio comparison of forecasts. 
 
Harte and Vere-Jones (2005) discussed an entropy score for probabilistic forecasts 
with several possible outcomes and considered the relationship of the entropy score 
to average log-likelihood and the Molchan diagram.  Harte et al. (2007) applied 
these techniques (in particular, an information gain) to test the M8 algorithm in 
New Zealand. 
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Schorlemmer et al. (2007) showed an example R-test computation using forecasts 
from Helmstetter et al. (2007) and the 2002 United States National Seismic Hazard 
Map. 
 
Kagan (2007, 2009) further developed the connections between Molchan diagram 
analysis and metrics based on likelihood.  
 
Zechar and Jordan (2008) introduced the area skill score metric and applied it to 
three alarm function forecasts—two probabilistic and the other providing only a 
ranking. Zechar and Jordan (2010) further explored the area skill score and gave 
analytical and numerical solutions for its distribution. 
 
Schorlemmer et al. (2010) applied the L-, N-, and R-tests to the first half of the 
RELM forecast experiment. 
 
Zechar et al. (2010a) applied all of the likelihood metrics discussed in this article 
(save the R-Test) to the RELM forecasts and explored the stability and statistical 
power of the tests. 
 
Werner et al. (in press) applied all of the likelihood metrics to the forecasts from 
the CSEP Italy experiment. 

8 Caveats and Summary 

No evaluation metric is ideal for all earthquake forecast experiments.  Indeed, 
because the format of predictions and forecasts can vary so widely, no evaluation 
metric is even applicable to all experiments!  My hope is that some of the methods 
I described in section 5 will be applicable and appropriate for your problem.  But it 
may be that the set of predictions or forecast that you want to evaluate cannot be 
judged with any of these metrics.  In that situation, it is likely that you can at 
least let these methods guide you to a custom solution.  In particular, make sure 
that the reference model that you use, implicit or otherwise, is realistic and not 
overly simple.  When possible, incorporate the relevant first-order observations of 
seismicity—for example, clustering of earthquakes in space and time. 
 
You should note that if you apply multiple tests to a given combination of forecast 
and observation and you choose a nominal critical significance value for each test, 
the composite confidence is not the same as the significance value that you used for 
each test.  In particular, the probability of rejecting a forecast based on at least one 
of the tests is higher than the assumed significance value for a given test.  In other 
words, if you conduct an L-test with a critical value of 5% and an N-test with a 
critical value of 5%, the probability that a forecast will “pass” both tests is less than 
5%.  In this situation, you can consider applying a Bonferroni correction to the 
composite significance value (or, conversely, to the individual test values) (e.g., 
Shaffer 1995). 
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The gridded rate forecast format is also worth further consideration.  In section 5, I 
presented solutions only for forecasts with independent bin forecasts.  As 
seismologists, we find this unsettling, because we tend to think that earthquakes 
interact with and even trigger each other, i.e., bins are not independent.  In 
principle, it is straightforward to modify the solutions if the forecast dependence is 
fully specified: so long as the likelihood of an observation can be computed, the 
metrics are easy to compute.  But to specify this independence in advance of a 
forecast experiment is not a trivial task: for each bin, you would need to specify 
conditional probability distributions characterizing the relationship to all other 
bins.  From this perspective, a shift to emphasizing short-term forecasts, which can 
be updated quickly after each new earthquake, may be appropriate. 
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