

Università degli Studi di Roma "La Sapienza" Dipartimento di Ingegneria Civile, Edile e Ambientale

Efficient use of Ambient Vibrations for Site Characterization and Seismic Response Analysis

Valerio Poggi

Proc sel n 1 SC 04/A4 SSD GEO/11 Codice bando: 2018RTDB006

Local Seismic Response

- For a particular site, the **amplitude** and **duration** of the ground motion during an earthquake can significantly be modified by the effect of the *local site conditions*
- On very soft sediments on top of a rigid bedrock, the ground motion can be amplified by more than a factor of 10, with increase in duration of several tens of seconds.
- Additionally, the energy can be non-evenly redistributed over different <u>frequency bands</u> of the spectrum, with a chance of matching the dominant resonant frequencies of buildings

Geophysical Site Characterization

- The ground motion at the surface is highly controlled by the <u>geophysical properties</u> (velocity, density, quality factors) of the **first tens to hundreds of meters of the earth structure**, where the larger variability of the geological conditions is present.
- To correctly compute/analyze the seismic response, an adequate *level of knowledge* of the structural characteristics for the site area is necessary.
- The available level of knowledge is often insufficient because of the *considerable investments* required for measurements.

Using Ambient Vibrations

- Ambient vibrations (often improperly called <u>seismic noise</u>) are mircovibrations originated from the interaction of natural (wind, rain, ocean) and anthropogenic sources with the earth surface.
- The ambient vibration wave-field is largely dominated by surface waves (Rayleigh and Love), with a minor although not negligible contribution of **body waves**.
- Due to its stochastic nature, amplitude and/or the phase information is analyzed statistically to obtain properties (e.g. polarization, velocity dispersion) which can be used to infer information on the soil structure

State of the Art (?)

- The number of publications about the use of ambient vibrations has <u>increased considerably</u> during the last decade, due to **simplicity** and **cost-effectiveness** of the method.
- In most cases, however, authors settle using basic processing techniques (e.g. simple H/V ratios) without fully exploring the huge potential of such phenomenon.
- Are here presented a few examples of the **advance use of ambient vibrations** for site characterization and seismic response analysis.

SECTION A Single Site Characterization

The Swiss Networks (SSMNet, SDSNet)

The **Strong Motion Network** (SSMNet, 55 stations) and the **Swiss Digital Network** (SDSNet, 52 stations) cover a variety of geological conditions in Switzerland, from <u>very hard rock sites</u> to <u>low-velocity sedimentary valleys</u>.

Ambient Vibration Measurements

Single-Station Analysis

Surface Wave Array Analysis

Vertical

4000

0.8

3C F-K Array Processing

Three-component f-k analysis extends the original high-resolution algorithm of Capon (1969) to estimate the f-k power-spectrum for the horizontal components.

Radial/Transversal Decomposition

Direction of Arrival (DoP) ambiguity can be solved by array analysis using vector composition of the horizontal wave-field:

Radial (Rayleigh) $\rightarrow U^{R} = U^{N-S} \cdot \cos(\vartheta) + U^{E-W} \cdot \sin(\vartheta)$ **Transversal** (Love) $\rightarrow U^{T} = U^{N-S} \cdot \cos(\vartheta + \pi/2) + U^{E-W} \cdot \sin(\vartheta + \pi/2)$

C-S Density

Rayleigh DoP
Love DoP
Particle motion
(R&T)

DoA - Direction of Arrival (Rad)

Cross-Spectral Rayleigh Ellipticity

- If a Rayleigh wave mode is identified on the f-k planes, the <u>amplitude ratio</u> <u>between the horizontal-radial and the vertical f-k power-spectra</u> will represent its **ellipticity**.
- Thus, if several modes of propagation are identified in the f-k planes, then the Rayleigh ellipticity function can be extracted *for each mode separately*.

SESAME Dataset M2.1

Outside resolution limits

Rayleigh wave elliptical motion

1) Rayleigh wave ground motion is **elliptical**. It can be described by **two orthogonal components** (horizontal and vertical) oscillating in phase in a plain perpendicular to the free surface, which contains the direction of propagation

2) As for velocity dispersion, the ellipticity of the Rayleigh wave ground motion is **frequency dependent**

3) Rayleigh wave ellipticity is site specific and could be used in principle to retrieve the properties (Vp, Vs, density) of the ground by **inversion procedure**

Marano' et al., 2013

Rayleigh wave ellipticity

Combined Inversion of Multiple datasets

Active Seismic on Continuous Recordings

Reference time is defined on the continuous recordings using the Hilbert transform.

The wave-field is then decomposed using the *continuous (complex) wavelet transform*.

Rayleigh Wave Radial & Vertical

Amplification Model Validation

Empirical Amplification from Spectral Modeling

Here GMPE terms are **analytical solutions** of a given physical model, whose complexity can be increased with the availability of new information

Engineering Parameters

- → Travel-time average velocities (Vs-Z)
- Quarter-wavelength parameters (Vs and IC)
- → Soil classification (SIA261)
- \rightarrow SH amplification functions and f_0

Vs-Z								irequency
	Averaging Depth (m)							
	5	10	20	30	40	50	100	200
STIEG	229.55	292.77	382.21	453.01	500.99	556.49	786.21	1105.71
BERGE	1356.45	1416.48	1514.8	1703.22	1833.41	1939.84	2204.53	2371.5
DAGMA	701.25	729.08	823.92	913.7	982.23	1051.84	1263.87	1515.05
METMA	336.62	442.72	640.81	817.94	969.04	1098.2	1602.18	2124.63
ROTHE	611.92	665.97	843.89	954.4	1024.6	1074.3	1202.77	1294.47
HAMIK	238.33	314.41	407.08	487.58	552.09	616.4	834.86	1060.17
BOBI	279.96	350.94	486.23	590.02	668.27	736	955.85	1212.99
WALHA	397.93	464.16	642.18	766.06	851.3	933.78	1165.62	1380.97
EMING	220.99	306.21	489.82	659.08	803.27	932	1392.32	1895.09
EMMET	468.12	571.58	672.68	800.73	892.53	960.55	1140.8	1316.13

Empirical Models for Amplification Prediction

SECTION B Basin Analysis and Microzonation Studies

Seismic Microzonation and Site-Response Analysis

Microzonation is the seismic hazard assessment at local scale, accounting for both:

- **1** the modification of the ground motion (amplitude, duration)
- earthquake induced phenomena

~

SBB main train station

Ambient Vibration Measurement Survey

Lucerne > 100 single station \mathbf{O} measurements 21179 LUZERN 4 array installations ☆ 211379 21123 у (m) 210965 21108 21055 х (ш 21092 210137 209724 210772 666124 666270 666416 666562 x (m) Main array (~350m Ø) 665259 665863 666466 667070 667673 x (m)

Rayleigh Wave Ellipticity From Single Station Measurements

- Inversion of just ellipticity curves is a highly non-linear and non-unique problem and may require additional constraints or some <u>"a priori" knowledge</u>
- It is however advantageous in that it efficiently constrains the deepest portion of the velocity model
- Unfortunately, ellipticity information is hided into single station H/V ratios and extraction is not a trivial task.

...how to correct for body and Love wave contributions? ...how to identify and separate out the contribution of higher modes?

H/V Ratios Using Wavelet F-T Analysis

Compared to classical H/V, the FTAN method helps in minimizing the effect of Love (and SH) wave contribution, particularly for the **fundamental mode**

The resulting ellipticity can be directly used for inversion

Ellipticity Inversion

- · Bedrock geometry is derived from inversion of the ellipticity information extracted from each individual station
- An *exponential regression* is used to describe the relation between the ellipticity peaks (E0) and inverted depths

0.8

0 6 Normalized density

212080

211169

210713

210258

200802 665331

Ē

0.8

0.0 Normalized dens

0.2

Estimated bedrock depth (m)

Bedrock

X (m)

666686

666234

?m

Lake borders

667137

667589

100

40

Bedrock

<10m

665783

Mode Mean

Mode

Mean

3 4 5 6 7 8 910

3 4 5 6 7 8 910

2

Frequency (Hz)

10¹

H/V Ratio 0

10⁻¹

10¹

H/V Ratio 00

10⁻¹

2.9Hz

2

Frequency (Hz)

1

1.9Hz

1

Pseudo 3D SH-Wave Amplification

The 3d model consists of a horizontal grid of 100x100 soil columns For each cell, a 1D **anelastic SH-wave transfer function** is computed

SECTION C 2D/3D Basin Response Analysis

Quantifying resonance amplification is not easy:

depth

- ⇒ Analytical solutions (nearly) impossible
- \Rightarrow <u>Numerical analysis very complex</u>
- ⇒ Empirical estimation problematic....

2D/3D Resonance Amplification

In case of 2D/3D resonance, the effect on the ground motion can be severe, but well localized in delimited areas of the basin (anti-nodal points), while nearby areas might be only marginally affected (nodal points)

Numerical

distance along profile (m)

Frequency Domain Decomposition

The **Frequency Domain Decomposition** (FDD, Brincker et al., 2001) is a popular seismic array techniques used in civil engineering for system response analysis

It basically relies on **singular value decomposition** of the signal's cross-power spectral density matrix to retrieve the eigenfunctions of the system (**the modal shapes**)

Using FDD in a 2D sedimentary basin

We apply the FDD method to synchronous recordings of ambient vibration from a linear array of three-component seismometers deployed along the transversal section of the basin

Martigny's Linear Array

Previous analysis of ambient vibration and seismic investigations are available from literature (e.g. Roten and Fäh, 2007)

We use **1h50m** of clean three-component ambient vibration recordings from a linear array of about **2.5km** length

The Numerical Model of Martigny

36 wave propagation simulations are computed for an array of point sources at fixed depth

Modal Shapes from FDD Analysis

Ambient vibration synthetics are also analyzed using FDD

For each resonance mode, modal analysis provides a realistic estimate of the **modal shapes**, including the location of the **nodal and anti-nodal points**, compatible with the **direct observations**

Conclusions....?

EXTRA SLIDES

Sensitivity to layer's interface depth

ETH